Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 25(10): 1300-1313, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180791

RESUMO

Myelin plasticity occurs when newly formed and pre-existing oligodendrocytes remodel existing patterns of myelination. Myelin remodeling occurs in response to changes in neuronal activity and is required for learning and memory. However, the link between behavior-induced neuronal activity and circuit-specific changes in myelination remains unclear. Using longitudinal in vivo two-photon imaging and targeted labeling of learning-activated neurons in mice, we explore how the pattern of intermittent myelination is altered on individual cortical axons during learning of a dexterous reach task. We show that behavior-induced myelin plasticity is targeted to learning-activated axons and occurs in a staged response across cortical layers in the mouse primary motor cortex. During learning, myelin sheaths retract, which results in lengthening of nodes of Ranvier. Following motor learning, addition of newly formed myelin sheaths increases the number of continuous stretches of myelination. Computational modeling suggests that motor learning-induced myelin plasticity initially slows and subsequently increases axonal conduction speed. Finally, we show that both the magnitude and timing of nodal and myelin dynamics correlate with improvement of behavioral performance during motor learning. Thus, learning-induced and circuit-specific myelination changes may contribute to information encoding in neural circuits during motor learning.


Assuntos
Axônios , Bainha de Mielina , Animais , Axônios/fisiologia , Aprendizagem , Camundongos , Bainha de Mielina/fisiologia , Neurônios , Oligodendroglia/fisiologia
2.
Neuron ; 110(17): 2867-2885.e7, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858623

RESUMO

Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.


Assuntos
Doenças do Sistema Nervoso , Estimulação do Nervo Vago , Animais , Encéfalo , Colinérgicos/farmacologia , Camundongos , Doenças do Sistema Nervoso/terapia , Plasticidade Neuronal/fisiologia , Estimulação do Nervo Vago/métodos
3.
Methods Mol Biol ; 2431: 351-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412286

RESUMO

Axonal transport is crucial for the development and survival of neurons and maintenance of neuronal function. Disruption in this active process causes diverse neurological diseases. Thus, study of the intracellular trafficking as one way to gain the knowledge of the kinetics of axonal transport is essential to understand the mechanisms underlying the neuropathology. A lot of studies have been completed in vitro with neuron cultures and tissues, which may not accurately replicate the in vivo situation. Therefore, intravital manipulations are essential to achieve this goal. Here we introduce a technique that has been widely used in our lab to study the cargo trafficking in zebrafish at single-cell resolution. We use mitochondria as a representative neuronal cargo and provide step-by-step instructions on how to label specific cargoes within zebrafish Mauthner cells. This method can also be expanded to study the kinetics of other cargoes as well as the role of molecular regulators in axonal transport.


Assuntos
Transporte Axonal , Peixe-Zebra , Animais , Transporte Axonal/fisiologia , Axônios/metabolismo , Neurônios
4.
J Phys Chem A ; 124(8): 1659-1665, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-31994889

RESUMO

Photothermal (PT) microscopy enables the efficient detection of absorbing nano-objects with high sensitivity and stability. The PT signal in the current PT microscopy usually comes from the interaction of the probe laser beam with the heating laser beam-induced thermal lens, and the contribution of the scattering field from the imaged nano-object is usually not taken into account. Here, in this paper, we systematically studied the influence of the scattering field from the imaged nanoparticles on the obtained PT signal by using Ag nanowires (NWs) on a glass substrate surrounded by glycerol as an example. Under the excitation of a heating laser beam at 532 nm wavelength, the rise of local temperature around the Ag NW results in the intensity variation of the interferometric scattering probe light at 730 nm wavelength which includes the scattering light from the Ag NW and the reflection light from the glass-glycerol interface. We found that the PT signal on the NW are positive and negative for the probe beam polarized parallel and perpendicular to the NW axis, respectively. Numerical simulations confirm that the heat-induced intensity variation of the pure scattering light from the NW and the thermal lens-induced intensity increase of the reflection light both contribute to the obtained PT signal. Our work provides the basic guidance for the analysis of PT signal from nano-objects with large scattering cross sections.

5.
FASEB J ; 33(6): 7721-7733, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30893562

RESUMO

Calcium is an important messenger in the neuronal system, but its specific role in axonal regeneration has not been fully investigated. To clarify it, we constructed a noninvasive in vivo calcium-imaging model of zebrafish Mauthner cells and monitored subcellular calcium dynamics during axonal regeneration. Using the calcium indicator GCamp6f, we observed that the regenerative length correlated with the peak amplitude of the evoked calcium response before axotomy, which suggested that the evoked calcium response might serve as a useful indicator of evoked neuronal activity and axonal regenerative capacity. To investigate this possibility, we overexpressed an inward rectifying potassium channel protein, Kir2.1a, to decrease the Mauthner neuronal activity and found that the inhibition of the calcium response correlated with decreased axonal regeneration. In contrast, treatment of pentylenetetrazol and knockout of the sodium voltage-gated channel α subunit 1 gene increased the calcium response and thus enhanced axonal regeneration. Our results therefore increased the understanding of the correlation between the neural activity and the vertebrate axonal regeneration.-Chen, M., Huang, R.-C., Yang, L.-Q., Ren, D.-L., Hu, B. In vivo imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish.


Assuntos
Axônios/metabolismo , Cálcio/metabolismo , Regeneração Nervosa , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Axotomia
6.
Exp Neurol ; 300: 67-73, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29092800

RESUMO

Zebrafish is an excellent model to study central nervous system (CNS) axonal degeneration and regeneration since we can observe these processes in vivo and in real time in transparent larvae. Previous studies have shown that Mauthner cell (M-cell) axon regenerates poorly after mechanical spinal cord injury. Inconsistent with this result, however, we have found that M-cell possesses a great capacity for axon regeneration after two-photon laser ablation. By using ZEISS LSM 710 two-photon microscope, we performed specific unilateral axotomy of GFP labeled M-cells in the Tol-056 enhancer trap line larvae. Our results showed that distal axons almost degenerated completely at 24h after laser axotomy. After that, the proximal axons initiated a robust regeneration and many of the M-cell axons almost regenerated fully at 4days post axotomy. Furthermore, we also visualized that regenerated axons were remyelinated when we severed fluorescent dye labeled M-cells in the Tg (mbp:EGFP-CAAX) line larvae. Moreover, by single M-cell co-electroporation with Syp:EGFP and DsRed2 plasmids we observed synapses re-establishment in vivo during laser injury-induced axon re-extension which suggested re-innervation of denervated pathways. In addition, we further demonstrated that nocodazole administration could completely abolish this regeneration capacity. These results together suggested that in vivo time-lapse imaging of M-cell axon laser injury may provide a powerful analytical model for understanding the underlying cellular and molecular mechanisms of the CNS axon regeneration.


Assuntos
Axônios/fisiologia , Microscopia Intravital/métodos , Larva/fisiologia , Regeneração Nervosa/fisiologia , Remielinização/fisiologia , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Axotomia/efeitos adversos , Imagem com Lapso de Tempo/métodos , Peixe-Zebra
7.
Front Mol Neurosci ; 10: 375, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209165

RESUMO

Axon regeneration, fundamental to nerve repair, and functional recovery, relies on rapid changes in gene expression attributable to microRNA (miRNA) regulation. MiR-133b has been proved to play an important role in different organ regeneration in zebrafish, but its role in regulating axon regeneration in vivo is still controversial. Here, combining single-cell electroporation with a vector-based miRNA-expression system, we have modulated the expression of miR-133b in Mauthner-cells (M-cells) at the single-cell level in zebrafish. Through in vivo imaging, we show that overexpression of miR-133b inhibits axon regeneration, whereas down-regulation of miR-133b, promotes axon outgrowth. We further show that miR-133b regulates axon regeneration by directly targeting a novel regeneration-associated gene, tppp3, which belongs to Tubulin polymerization-promoting protein family. Gain or loss-of-function of tppp3 experiments indicated that tppp3 was a novel gene that could promote axon regeneration. In addition, we observed a reduction of mitochondrial motility, which have been identified to have a positive correlation with axon regeneration, in miR-133b overexpressed M-cells. Taken together, our work provides a novel way to study the role of miRNAs in individual cell and establishes a critical cell autonomous role of miR-133b in zebrafish M-cell axon regeneration. We propose that up-regulation of the newly founded regeneration-associated gene tppp3 may enhance axonal regeneration.

8.
Front Cell Neurosci ; 11: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174522

RESUMO

Mitochondrial transport is essential for neuronal function, but the evidence of connections between mitochondrial transport and axon regeneration in the central nervous system (CNS) of living vertebrates remains limited. Here, we developed a novel model to explore mitochondrial transport in a single Mauthner axon (M axon) of zebrafish with non-invasive in vivo imaging. To confirm the feasibility of using this model, we treated labeled zebrafish with nocodazole and demonstrated that it could disrupt mitochondrial transport. We also used two-photon laser axotomy to precisely axotomize M axons and simultaneously recorded their regeneration and the process of mitochondrial transport in living zebrafish larvae. The findings showed that the injured axons with stronger regenerative capability maintain greater mitochondrial motility. Furthermore, to stimulate axon regeneration, treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP) could also augment mitochondrial motility. Taken together, our results provide new evidence that mitochondrial motility is positively correlated with axon regeneration in the living vertebrate CNS. This promising model will be useful for further studies on the interaction between axon regeneration and mitochondrial dynamics, using various genetic and pharmacological techniques.

9.
Mol Neurobiol ; 54(9): 6917-6930, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27771903

RESUMO

Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.


Assuntos
Caderinas/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Axônios/metabolismo , AMP Cíclico/metabolismo , Modelos Biológicos , Imagem Molecular , Pentilenotetrazol , Peptídeos/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...